ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. R. Easoz, R. Bajaj, R. E. Gold, J. W. H. Chi
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 780-784
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A22955
Articles are hosted by Taylor and Francis Online.
This paper reports work performed under Program Element I (PE-I) of the First Wall, Blanket, and Shield Program, the principal objectives of which are the testing of first wall design concepts to support the design of fusion reactor first walls and the verification of analytical techniques and design tools. The test facility, ESURF, consists of a 36 kW continuous duty electron beam, evacuated target chamber, and a 6.9 MPa water loop for active cooling of test pieces. Long pulse “steady state” surface heat loads are simulated by rastering the beam in two dimensions, while disruption heat loads are simulated by imposing a focused, stationary beam for a fixed length of time on the target area. Initial test pieces consisted of stainless steel (Type 316) tubes. Tests to date have included thermal-hydraulic characterization of the specimens, thermal cycling up to 500 cycles, disruption heat load simulations, and combined disruption heat loads with thermal cycling. The test results reported here address the verification of predicted thermomechanical response of the specimens, the effects of disruption heat loads on surface melting and crack formation, and the affect of thermal cycling on crack formation/propagation.