ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
G. D. Bazinet, W. F. Brehm, M. G. Down, D. K. Matlock
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 718-723
Materials Engineering | doi.org/10.13182/FST83-A22944
Articles are hosted by Taylor and Francis Online.
The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system-and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from ∼ 3700 to ∼ 6500 hours of exposure to flowing lithium at temperatures from 230° to 270°C and static lithium at temperatures from 200° to 500°C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.