ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. K. Combs, S. L. Milora, C. A. Foster, D. D. Schuresko, J. T. Hogan
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 666-674
Plasma Heating, Impurity Control, and Fueling | doi.org/10.13182/FST83-A22936
Articles are hosted by Taylor and Francis Online.
Pellet injectors that produce and accelerate frozen hydrogen isotope pellets are being developed at Oak Ridge National Laboratory (ORNL) for fueling of present and future plasma fusion devices. The development has focused primarily on two types of injectors: (1) gas guns, which utilize a pneumatic approach to accelerate pellets in a barrel with compressed helium or hydrogen propellant, and (2) centrifuge-type injectors, in which pellets are accelerated by centrifugal forces in a high-speed rotating track. In a single-pellet pneumatic injector, pellet speeds up to 1.4 km/s have been achieved. Three multipellet injection systems (ORNL four-pellet pneumatic design) are now functional, one each on the Poloidal Divertor Experiment (PDX), Alcator-C, and the Impurity Study Experiment (ISX-B). Currently, two repetitive devices (one of each injector type) are in operation to demonstrate steady-state fueling systems in the reactor-relevant parameter ranges of 1-km/s pellet velocity, variable pellet sizes up to 2 mm, and feed rates up to 10–40 pellets/s. The injector designs are described and operating characteristics discussed.