ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
William S. Cooper
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 632-641
Plasma Heating, Impurity Control, and Fueling | doi.org/10.13182/FST83-A22932
Articles are hosted by Taylor and Francis Online.
Negative-ion-based neutral beam systems can perform multiple functions for fusion reactors, such as heating, current drive in tokamak reactors, and establishing and maintaining potential barriers in tandem mirror reactors. Practical systems operating continuously at the 200 keV, 1 MW level can be built using present-day technology. Ion sources have been demonstrated that produce D− beams with <5% electron content, and that operate at linear current densities that are within a factor of 2 of what conservatively designed accelerator/transport structures can handle. Concepts are in hand for transporting the negative ion beam through a neutron maze before neutralization, thus permitting a radiation-hardened beamline. With an advanced laser photoneutralizer, overall system power efficiencies of 70% should be possible. A national program is being planned to achieve the goal of application of 475 keV systems on a mirror ETR in 1994.