ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. W. Moir, J. D. Lee, M. S. Coops, F. J. Fulton, W. S. Neef, Jr., D. H. Berwald, R. B. Campbell, B. Flanders, J. K. Garner, N. Ghoniem (Consultant, UCLA), J. Ogren, Y. Saito, A. Slomovik, R. H. Whitley, K. R. Schultz, G. E. Benedict, E. T. Cheng, R. L. Creedon I. Maya, V. H. Pierce, J. B. Strand, C. P. C. Wong, J. S. Karbowski, R. P. Rose, J. H. Devan, P. Tortorelli, L. G. Miller, P. Y. S. Hsu, J. M. Beeston, N. J. Hoffman, D. L. Jassby
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 589-598
Fusion System Studies | doi.org/10.13182/FST4-2P2-589
Articles are hosted by Taylor and Francis Online.
Studies of the technical and economic feasibility of producing fissile fuel in tandem mirrors and in tokamaks for use in fission reactors are presented. Fission-suppressed fusion breeders promise unusually good safety features and can provide make-up fuel for 11 to 18 LWRs of equal nuclear power depending on the fuel cycle. The increased revenues from sales of both electricity and fissile material might allow the commercial application of fusion technology significantly earlier than would be possible with electricity production from fusion alone. Fast-fission designs might allow a fusion reactor with a smaller fusion power and a lower Q value to be economical and thus make this application of fusion even earlier. A demonstration reactor with a fusion power of 400 MW could produce 600 kg of fissile material per year at a capacity factor of 50%. The critical issues, for which small scale experiments are either being carried out or planned, are: 1) material compatibility, 2) beryllium feasibility, 3) MHD effects, and 4) pyrochemical reprocessing.