ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
L. W. Owen, N. A. Uckan
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 519-523
Plasma Engineering | doi.org/10.13182/FST83-A22916
Articles are hosted by Taylor and Francis Online.
Methods of improving single particle confinement in the vacuum magnetic field of an ELMO Bumpy Torus (EBT) reactor have heretofore focused on enhancement of the effective magnetic aspect ratio through the addition of relatively low current supplementary coils to the basic EBT configuration of toroidally linked circular mirror coils. This method of aspect ratio enhancement is reviewed and compared to the use of noncircular, D-shaped mirror coils. A critical parameter in this evaluation is the required radial thickness δ of the blanket-shield assembly in the coil throat. Results indicate that D-coils represent an attractive alternative to the supplementary coil configurations if future neutronics calculations show that δ 1.1–1.2 m gives adequate neutron shielding and acceptable minimal breeding ratio under the coils. D-coils are shown to be extremely effective in symmetrizing mod-B in the midplane, thereby giving good trapped particle confinement, hot electron ring centering, and reactor volume utilization. In addition, magnetics systems with D-coils are significantly less complicated, with easier assembly, maintenance, and access, than configurations in which there are two supplementary coils per sector.