ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. E. Fenstermacher, N. A. Uckan
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 502-506
Plasma Engineering | doi.org/10.13182/FST83-A22913
Articles are hosted by Taylor and Francis Online.
A formalism has been developed in terms of a drift kinetic equation with a Fokker-Planck collision operator to calculate alpha particle loss and energy deposition rate coefficients for one position in space and for steady-state operating conditions in an ELMO Bumpy Torus (EBT) reactor. Pitch angle and energy scattering terms were retained in the collision term so that the analysis provides information on alpha particle behavior due to pitch angle scattering into loss regions in velocity space and information on alpha energy deposition during slowing down in the device. A square well magnetic field shape is assumed and the resulting particle loss rates and energy deposition rates are calculated. For typical EBT reactor parameters, results show that while 80-90% of the alpha particles are scattered into a pitch angle loss region and lost from the device, more than 70% of the alpha particle energy is deposited in the core plasma and about 1–2% goes to alphas retained in the plasma as ash. Parametric studies are performed, and the sensitivity to plasma potential, the pitch angle, the width of loss regions, and computational procedures are analyzed.