ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R.J. Thome, R.D. Pillsbury, Jr., W.R. Mann
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 453-458
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A22905
Articles are hosted by Taylor and Francis Online.
The rapid decay of magnetic flux during a plasma disruption induces voltages, currents, and Lorentz loadings in nearby electrically-conducting material. Present designs employ toroidal shells or shell segments near the plasma. These shells are divided into sectors for assembly and maintenance considerations, but may have toroidally-continuous conducting paths due to the need for vacuum boundaries. Voltages induced across sector gaps may initiate arcing and subsequent material damage. In addition, induced eddy currents in the shells can interact with the toroidal field and generate large net torques on a sector. A finite element model was used to estimate the induced sector gap voltages and net overturning moments following a 10 ms disruption. The number of shells, toroidal continuity, resistivity, and shell thicknesses were varied. Results are presented that show the effects of these changes on the sector gap voltages and induced loads.