ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Takeji, A. Isayama, T. Ozeki, S. Tokuda, Y. Ishii, T. Oikawa, S. Ishida, Y. Kamada, Y. Neyatani, R. Yoshino, T. Takizuka, N. Hayashi, T. Fujita, G. Kurita, T. Matsumoto, T. Tuda, JT-60U Team
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 278-297
Technical Paper | doi.org/10.13182/FST02-A229
Articles are hosted by Taylor and Francis Online.
Progress in the understanding of magnetohydrodynamic (MHD) stability is summarized on JT-60U tokamak discharges with improved confinement such as the (hot-ion) H-mode, high-p mode, high-p H-mode, and reversed shear discharges. Transport barriers, which are essential for the improved confinement, play key roles in the local and global MHD stability owing to the local large pressure gradient and the related bootstrap current. Disruptive limits of these discharges are consistent with theoretical ideal kink-ballooning stability limits with low toroidal mode numbers n. Achievable limit is improved by broadening of the pressure profile with high plasma internal inductance, plasma shaping, and wall stabilization. Edge localized modes (ELMs) and barrier localized modes (BLMs), which are associated with edge and internal transport barriers, respectively, are analyzed carefully. Resistive interchange modes with n 3 are excited in the negative shear region in reversed shear discharges with the internal transport barrier and lead to major collapse occasionally through nonlinear coupling with a tearing mode in the positive shear region. MHD characteristics of low m/n (m: poloidal mode number) tearing modes, which are attributed to the neoclassical tearing mode, are investigated. Stabilization of tearing modes and control of sawtooth activity are demonstrated using the fundamental O-mode electron cyclotron wave injection. Resistive wall modes associated with current-driven and pressure-driven low n external kink modes are identified.