ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J.A. Fillo, J.R. Powell, R. Benenati, F. Malick
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 184-188
Hybrids and Nonelectric Applications | doi.org/10.13182/FST83-A22865
Articles are hosted by Taylor and Francis Online.
The HYFIRE studies have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (>1000°C) water electyrolysis process. Current emphasis has been on two design points, one consistent with a peak electrolyzer temperature of ∼1150°C (based on current laboratory experience with high-temperature, solid electrolyte fuel cells), and a second, consistent with a peak electrolyzer temperature of ∼1300°C, which is an extrapolation of present experience. The technical integration of fusion and high-temperature electrolysis appears feasible.