ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. C. Geer, T. A. Parish
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 161-166
Hybrids and Nonelectric Applications | doi.org/10.13182/FST83-A22861
Articles are hosted by Taylor and Francis Online.
Fissile fuel producing blankets for both D-D and D-T fusion reactors are designed based on a slurry concept. In the designs, the blanket is composed of a slurry of ThO2 particles carried by heavy water. The slurry serves both to cool the reactor and to breed fissile fuel. Neutronic and photonic calculations showed that the slurry blankets achieved performance comparable to alternative concepts (moltensalts, fixed fertile material). For the slurry concept to be useful for a D-T reactor, a neutron multiplier needed to be used. The fast fission rate in the slurry blankets was small. Fission of the bred fissile material can be limited by removal of the ThO2 particles for processing after 5–10 days of irradiation.