ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
F. Carre, E. Proust, A. Rocaboy
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 93-98
Tritium | doi.org/10.13182/FST83-A22850
Articles are hosted by Taylor and Francis Online.
The tritium cycle of a fusion reactor is here-after investigated by a synthetic model of the tritium circulation between the blanket, the tritium recovery units from the breeder, the coolant, the plasma exhaust and the storage unit. Analytical expressions of the minimum required breeding capability and of the initial tritium supply are derived to analyse the sensitivity of these crucial parameters to the fractional burn up, to the tritium losses (radioactive and others) and to the processing time associated with the various units. As confirmed by the parametric study of a few typical situations, the necessary breeding capability and the initial tritium supply are essentially functions of the total equilibrium inventory. In addition, the distribution of this total inventory among the various units and the possible disproportion of the time scales required by different recovery processes, strongly influence the initial tritium requirement and the doubling time associated with given breeding performances.