ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
W. Jeppson, Lewis D. Muhlestein, Sydney Cohen
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 277-287
Overview | Special Section Content / Safety/Environment Aspect | doi.org/10.13182/FST83-A22819
Articles are hosted by Taylor and Francis Online.
Tritium breeder material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Breeder material safety compatibility studies are being conducted to identify and characterize breeder-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate the following. 1. Ternary oxides (liAlO2, Li2ZrO3, Li4SiO4, and liTiO3) at postulated blanket operating temperatures are chemically compatible with water coolant, while liquid lithium and Li7Pb2 reactons with water generate heat, aerosol, and hydrogen. 2. Lithium oxide and 17Li-83Pb alloy react mildly with water requiring special precautions to control hydrogen. 3. Liquid lithium reacts subtantially, while 17Li83Pb alloy reacts mildly with concrete to produce hydrogen. 4. Liquid lithium-air reactions may present some major safety concerns. Additional scoping tests are needed, bot the ternary oxides, lithium oxide, and 17Li-83Pb have definite safety advantages over liquid lithium and Li7pb2. The ternary oxides present minimal safety-related problems when used with water as coolant, air, or concrete; but they do require neuton multipliers, which may have safety compatibility concerns of lithium oxide 17Li-83Pb make them prime candidates as breeder materials. Current safety efforts are directed toward assessing the compatibility of lithium oxide and the lithium-lead alloy with coolants and other materials.