ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Balabhadra Misra, Robert G. Clemmer, Dale L. Smith
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 253-262
Technical Paper | Special Section Content / Blanket Engineering | doi.org/10.13182/FST83-A22817
Articles are hosted by Taylor and Francis Online.
Steady-state thermal-hydraulic analyses were carried out for the DEMO/STARFIRE fusion reactor based on solid breeder blankets and pressurized water as the coolant. The results of the parametric studies show that a coolant in-tube design, i.e., coolant tubes embedded in solid breeder blanket, with a contact resistance between the coolant tube and the solid breeder tailored to maintain the operating temperature window (i.e., the maximum and the minimum temperature imposed on the solid breeder) is viable. However, design of such a solid breeder blanket will present serious challenges because of uncertainty in the thermophysical properties of breeder materials, the narrow operating temperature window, the close manufacturing tolerances necessary to control the gap conductance, the sensitivity of tritium inventory and tritium extraction to breeder temperature distribution, and the deleterious effect of neutron irradiation on breeder material properties. The study shows that even modest uncertainties in the thermal conductivity of solid breeders, interfacial gap conductances, and operating power levels can have significant impact on blanket design. Therefore, the designer should include the expected variations in these parameters. Experimental programs are needed to quantify the above factors and to develop methods (e.g., insulated coatings) for gap conductance control and in situ recovery of tritium via helium purge gas channels.