ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Balabhadra Misra, Robert G. Clemmer, Dale L. Smith
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 253-262
Technical Paper | Special Section Content / Blanket Engineering | doi.org/10.13182/FST83-A22817
Articles are hosted by Taylor and Francis Online.
Steady-state thermal-hydraulic analyses were carried out for the DEMO/STARFIRE fusion reactor based on solid breeder blankets and pressurized water as the coolant. The results of the parametric studies show that a coolant in-tube design, i.e., coolant tubes embedded in solid breeder blanket, with a contact resistance between the coolant tube and the solid breeder tailored to maintain the operating temperature window (i.e., the maximum and the minimum temperature imposed on the solid breeder) is viable. However, design of such a solid breeder blanket will present serious challenges because of uncertainty in the thermophysical properties of breeder materials, the narrow operating temperature window, the close manufacturing tolerances necessary to control the gap conductance, the sensitivity of tritium inventory and tritium extraction to breeder temperature distribution, and the deleterious effect of neutron irradiation on breeder material properties. The study shows that even modest uncertainties in the thermal conductivity of solid breeders, interfacial gap conductances, and operating power levels can have significant impact on blanket design. Therefore, the designer should include the expected variations in these parameters. Experimental programs are needed to quantify the above factors and to develop methods (e.g., insulated coatings) for gap conductance control and in situ recovery of tritium via helium purge gas channels.