ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Balabhadra Misra, Robert G. Clemmer, Dale L. Smith
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 253-262
Technical Paper | Special Section Content / Blanket Engineering | doi.org/10.13182/FST83-A22817
Articles are hosted by Taylor and Francis Online.
Steady-state thermal-hydraulic analyses were carried out for the DEMO/STARFIRE fusion reactor based on solid breeder blankets and pressurized water as the coolant. The results of the parametric studies show that a coolant in-tube design, i.e., coolant tubes embedded in solid breeder blanket, with a contact resistance between the coolant tube and the solid breeder tailored to maintain the operating temperature window (i.e., the maximum and the minimum temperature imposed on the solid breeder) is viable. However, design of such a solid breeder blanket will present serious challenges because of uncertainty in the thermophysical properties of breeder materials, the narrow operating temperature window, the close manufacturing tolerances necessary to control the gap conductance, the sensitivity of tritium inventory and tritium extraction to breeder temperature distribution, and the deleterious effect of neutron irradiation on breeder material properties. The study shows that even modest uncertainties in the thermal conductivity of solid breeders, interfacial gap conductances, and operating power levels can have significant impact on blanket design. Therefore, the designer should include the expected variations in these parameters. Experimental programs are needed to quantify the above factors and to develop methods (e.g., insulated coatings) for gap conductance control and in situ recovery of tritium via helium purge gas channels.