ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Nancy L. Schwertz, Myron A. Hoffman
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 479-490
Technical Papers | Blanket Engineering | doi.org/10.13182/FST83-A22797
Articles are hosted by Taylor and Francis Online.
The performance potential of a heat pipe designed specifically to operate in the high magnetic fields of a fusion reactor is investigated analytically. The heat pipe has a thin, flat cross section aligned parallel to the magnetic field so as to reduce the eddy currents and the resultant magnetohydrodynamic pressure drops in the liquid wick flow. The flat heat pipes are used to cool a pool of liquid lithium (or lithium-lead eutectic) in the blanket that surrounds the central-cell plasma of a tandem mirror fusion reactor. Calculations indicate that this new heat pipe design may be able to transport up to ∼6800 W/cm2 of condenser cross-sectional area in a 2-T magnetic field. This is considerably higher than the 420 W/cm2 capability of a conventional cylindrical heat pipe of similar dimensions employing a channel wick and operating in the same 2-T field.