ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Nancy L. Schwertz, Myron A. Hoffman
Fusion Science and Technology | Volume 4 | Number 3 | November 1983 | Pages 479-490
Technical Papers | Blanket Engineering | doi.org/10.13182/FST83-A22797
Articles are hosted by Taylor and Francis Online.
The performance potential of a heat pipe designed specifically to operate in the high magnetic fields of a fusion reactor is investigated analytically. The heat pipe has a thin, flat cross section aligned parallel to the magnetic field so as to reduce the eddy currents and the resultant magnetohydrodynamic pressure drops in the liquid wick flow. The flat heat pipes are used to cool a pool of liquid lithium (or lithium-lead eutectic) in the blanket that surrounds the central-cell plasma of a tandem mirror fusion reactor. Calculations indicate that this new heat pipe design may be able to transport up to ∼6800 W/cm2 of condenser cross-sectional area in a 2-T magnetic field. This is considerably higher than the 420 W/cm2 capability of a conventional cylindrical heat pipe of similar dimensions employing a channel wick and operating in the same 2-T field.