ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Federico R. Casci, Ettore Minardi
Fusion Science and Technology | Volume 4 | Number 1 | July 1983 | Pages 170-175
Technical Paper | Magnet System | doi.org/10.13182/FST83-A22783
Articles are hosted by Taylor and Francis Online.
The basic parameters characterizing the burn control with the vertical field in an ignited tokamak are discussed in a zero-dimensional model assuming a single circuit for the vertical field and neglecting passive effects. The behavior of the system is determined by three dimensionless quantities: ξ which includes the effect of the mutual inductance; Ũ , related to the gain of the linear feedback; and A, related to the pressure, to the plasma current, and to the vertical field index. Analysis of the circuit equations and of the transport equation leads to the determination of stability regions in the parameter space. It is shown that the effect of the mutual inductance described by ξ is always relevant in the choice of the parameters for a stable burn. As a practical illustration the results are applied to the INTOR case.