ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. T. Cheng, C. P. C. Wong Ga
Fusion Science and Technology | Volume 4 | Number 1 | July 1983 | Pages 164-169
Technical Paper | Nonelectrial Applications | doi.org/10.13182/FST83-A22782
Articles are hosted by Taylor and Francis Online.
A scoping study was performed to explore tritium breeding and energy-temperature splits in various blanket concepts for high-temperature process heat. Temperature limits for the lithium materials necessitate two blanket zones. One delivers heat at moderate temperatures (≾600°C) and breeds tritium. The other is a nonbreeding zone that produces heat at high temperatures. We find that a system where all blanket modules breed tritium delivers more high-temperature heat than one where only some of the blanket modules produce tritium. Of those considered, a design where the high-temperature zone is placed between two breeding zones produces the highest fraction of high-temperature heat. When liquid lithium, Li7Pb2 and Li2O tritium breeding materials are employed with two breeding zones, a tritium breeding ratio of 1.1 can be achieved while delivering 30 to 40% of the blanket heat at high temperature.