ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
James F. Stubbins
Fusion Science and Technology | Volume 4 | Number 1 | July 1983 | Pages 102-119
Technical Paper | Icf chamber Engineering | doi.org/10.13182/FST83-A22779
Articles are hosted by Taylor and Francis Online.
Thermionic power production is shown to be a viable technique for increasing dry-wall inertial confinement fusion (ICF) power output. Thermionic cells produce electricity directly in a topping cycle run off the high temperatures generated at the first vacuum wall by the absorption of fusion product x rays and charged particles. The high temperatures are used to heat the thermionic emitter, which is an integral part of the first wall The principal engineering consideration is the means of providing the emitter with a high steady-state operating temperature, while the reactor itself operates a pulsed mode with ICF events occurring at between 1 and 20/s. It is shown that several design variables, including materials selection, first-wall thickness, and target firing rate can be chosen to satisfy the emitter temperature requirements. Furthermore, heating requirements do not rely on neutron attenuation, so neutrons can be conserved to meet tritium breeding requirements in the blanket. Several other aspects of the thermionic system design and engineering are discussed. These are related to the current state of development of thermionic convertors, and to possible further advances in the technology.