ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Taha Houssine Zerguini
Fusion Science and Technology | Volume 4 | Number 1 | July 1983 | Pages 54-63
Technical Paper | Plasma Engineering | doi.org/10.13182/FST83-A22774
Articles are hosted by Taylor and Francis Online.
Sloshing ion distributions are a crucial feature in the end cells of recent tandem mirror reactor designs. They provide the ambipolar potentials that confine central ions and often have the function of making the electron thermal barrier with a potential shape that traps enough cold ions at the midplane for the stabilization of loss cone modes. A perturbation method is developed to find solutions of sloshing-ion distributions. This method uses an expansion in the ratio of electrostatic potential to average ion energy to simplify the bounce-averaged Fokker-Planck equation. The zero'th order equation obtained is separated into equations for the angular and velocity-dependent parts of the distribution function. An analytical solution of the angular equation is derived for small charge-exchange to ionization ratios. For any value of this ratio finite element techniques, which provide rapid numerical solutions for parametric studies of sloshing ions, are used to derive the angular and the velocity distribution functions. The density ratio and the ambipolar potential, as functions of axial distance, are computed from the angular distribution function. There is excellent agreement with results from the Lawrence Livermore National Laboratory bounce-averaged Fokker-Planck code with as much as 500 times less CRAY-1 computer time.