ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
William W. Simmons, Robert O. Godwin
Fusion Science and Technology | Volume 4 | Number 1 | July 1983 | Pages 8-24
Overview | Nova | doi.org/10.13182/FST4-1-8
Articles are hosted by Taylor and Francis Online.
The Nova laser fusion research facility, currently under construction at Lawrence Livermore National Laboratory (LLNL), will provide researchers with powerful new tools for the study of nuclear weapons physics and inertial confinement fusion (ICF). The Nova laser system consists of ten large (74-cm-diam) beams, focused and aligned precisely so that their combined energy is brought to bear for a small fraction of a second on a tiny target containing thermonuclear fuel (deuterium and tritium). The ultimate goal of the LLNL ICF program is to produce fusion microexplosions that release several hundred times the energy that the laser delivers to the target. Such an achievement would make ICF attractive for military and civilian applications. The U.S. Department of Energy has approved construction of ten Nova laser beams, harmonic-conversion crystal arrays, and the associated laboratory buildings. By the mid 1980s, Nova will produce the extremes of heat and pressure required to explore the physical region of ignition of the thermonuclear fuel Additional developments in the area of high-efficiency drivers and reactor systems may make ICF attractive for commercial power production.