ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
S. Ueda, K. Tatenuma, Y. Nanjou, M. Matsuyama, T. Itoh, K. Watanabe
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1146-1150
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22763
Articles are hosted by Taylor and Francis Online.
To improve the efficiency of gas chromatography for hydrogen isotope separation near room temperature, feasibility of new columns was examined for H-D and H-D-T mixture gases. One kind of the column was the mixture of Pd-Pt alloy and Cu powders as the previous study. But special attention was paid for preparing the separation column; Pd-Pt alloy particles below 200 mesh was mixed with copper powder of 150–200 mesh and packed into a loading tube of stainless steel as uniform as possible. The separation for H-D mixture gases could be remarkably improved by this column even at temperatures around 300 K. This column also could separate tritium as T2 from H-D-T mixture gas containing only 0.13 % T. The other column was prepared by Pd-Pt alloy supported by porous SiC powder for economical use of the expensive alloy. Although this column gave similar separation chromatograms, the separation efficiency was still insufficient and further studies are required.