ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jennifer S. Young, Robert H. Sherman, R. Scott Willms, Yasunori Iwai, Masataka Nishi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1131-1136
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22760
Articles are hosted by Taylor and Francis Online.
Cryogenic distillation is the only technique with the capacity to handle the hydrogen isotope separation requirements of a fusion power plant. However, there are safety and cost considerations associated with the considerable tritium inventory that can accumulate in such an isotope separation system (ISS). The ISS must be able to reliably produce specified products while responding to varying input streams. To design an ISS that balances all of these considerations and operate it reliably, it is essential to have a computer model of the system. This allows for a better understanding of the system and the exploration of various parameter regions that would otherwise require very expensive experimentation. The value of such a model, however, is questionable until it is validated by comparison with actual experiments. Recently, as part of the Annex IV US/Japan collaboration, a series of tests were conducted on the ISS system at the Tritium Systems Test Assembly (TSTA) located at Los Alamos National Laboratory (LANL). This system has a fusion power plant-relevant capacity of 6 SLPM (standard liters per minute). These experiments employed light hydrogen (protium), deuterium and tritium. Conditions at five steady state conditions were measured. The measurements included concentration measurements at the column feed, top and bottom, and also at intermediate points. These measurements served as a benchmark for comparison to DYNSIM, the model that has been in use at LANL for many years.† This model was able to accurately predict the column concentration profile based on the measured pressure, temperature, reboiler heat, feed composition and flows for a set of significantly different operating conditions. These results impart confidence that the model is useful for future ISS design and for better understanding of existing system operations.