ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Tadaaki Arita, Toshihiko Yamanishi, Yasunori Iwai, Masataka Nishi, Ichiro Yamamoto
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1116-1120
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22757
Articles are hosted by Taylor and Francis Online.
The separation factors of a cryogenic-wall thermal diffusion column have been measured with H-D and H-T systems. The column was 1.5 m in height and 0.03 m in diameter. Two types of heaters were tested: a tungsten wire 0.5 mm in diameter and a stainless steel sheath heater 11 mm in diameter. The maximum separation factors using the tungsten wire were 49 for an H-D system and 284 for an H-T system under the total reflux mode at 1273 K. At the feed flow rate of 10 cm3/min, the separation factor using the tungsten wire was 55 for the H-T system at 1273 K. The separation factor was decreased as the diameter of the heater was decreased; and the optimum pressure was increased with the diameter of the heater. In the case where the sheath heater (11 mm) was used at 10 cm3/min with the H-T system, the maximum separation factor reached 2660 even at 763 K.