ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Satoshi Fukada, Samsun-Baharin Mohamad, Hiroshi Fujiwara, Masabumi Nishikawa
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1082-1086
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22750
Articles are hosted by Taylor and Francis Online.
Chromatographic separation of hydrogen isotopes, protium and deuterium, was carried out experimentally using a four-column Pd bed system. The system was operated under the conditions of atmospheric hydrogen pressure and swing of column temperature of 303 K to 473 K. Maximum deuterium enrichment ratio defined as the ratio of the deuterium concentration in product to that in feed was around 100 independent of the deuterium concentration. The deuterium recovery ratio was more than 0.5. Effluent curves were analyzed by the numerical simulation by the plate model. Close agreement was obtained between experiment and analysis. High enrichment of deuterium was also successfully achieved by frontal chromatography using a comparatively large column.