ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
J.M. Miller, W.R.C. Graham, S.L. Celovsky, J.R.R. Tremblay, A.E. Everatt
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1077-1081
Isotope Separation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22749
Articles are hosted by Taylor and Francis Online.
A 5 Mg/annum Combined Electrolysis Catalytic Exchange (CECE) Facility was designed, constructed and operated to demonstrate the CECE process for heavy water detritiation. In this demonstration facility, a liquid-phase catalytic exchange (LPCE) column, using AECL's wetproofed catalyst, separated tritium from deuterium and a specially designed, low-inventory electrolytic cell provided tritium-enriched deuterium to the LPCE column. An overhead recombiner, also using wetproofed catalyst, produced detritiated heavy water. Tritium was removed from the electrolysis cell as tritiated deuterium gas and packaged as a titanium deuteride. The design detritiation factor of 100 was readily achieved using a 370 GBq/kg heavy water feed. Design features, operational experience and results from the 4-month, 2 000-h operation are described.