ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S.Beloglazov, M.Nishikawa, T.Tanifuji
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1049-1053
Blanket Material and Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22744
Articles are hosted by Taylor and Francis Online.
In this paper we propose a model to explain tritium release from irradiated Li2ZrO3 sample made by Mitsubishi Atomic Power Industries Inc. (MAPI). The release curves were obtained by temperature programmed desorption (TPD) techniques in a series of experiments in Kyoto University Reactor (KUR) and in the JRR-4 reactor of the Japan Atomic Energy Research Institute (JAERI). In the model a number of mass transfer steps were taken into account. There were diffusion of tritium in the grain, adsorption and desorption of water on the surface of grains, two types of isotope exchange reactions, water formation reaction in addition of hydrogen to the purge gas. Tritium release curves for different purge gas compositions (N2, N2 + H2O) were calculated to compare with data obtained in the experiments. Apparent diffusivities of tritium in crystal grain of Li2ZrO3 were determined.