ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
N.Nakashima, S.Beloglazov, K.Hashimoto, M.Nishikawa
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1044-1048
Blanket Material and Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22743
Articles are hosted by Taylor and Francis Online.
Though litium ceramic materials such as Li2O, LiA1O2, Li2ZrO3, Li4SiO4, and Li2TiO3, are considered as the candidates for breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood yet. We have pointed out that it is essential to understand such mass transfer steps as diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions for estimation of the tritium inventory in a uniform solid breeder blanket under the steady-state condition. The rate of isotope exchange reaction-1 on Li2TiO3 is quantified in this study, where pebbles of Li2TiO3 from CEA, KHI, and NFI are used.It is observed in this study that the rate of isotope exchange reaction on Li2TiO3 becomes 2∼3 order smaller than other solid breeder materials when it is placed in the hydrogen atmosphere at high temperature. It is also observed that the color of Li2TiO3 changed to black in accordance with decrease of reaction rate.The observation obtained at the release experiment of bred tritium performed in Kyoto University Reactor that chemical form of tritium becomes HTO at the high temperature even when hydrogen of 100 Pa is added to the purge gas can be explained by decrease of isotope exchange reaction rate.Tritium inventory in the Li2TiO3 blanket in various conditions are also discussed in this paper.