ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Sugai, M. Yahagi, H. Hamanaka, K. Kuriyama, T. Hshimoto
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 1030-1034
Blanket Material and Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22740
Articles are hosted by Taylor and Francis Online.
In the Japan Atomic Energy Research Institute (JAERI), technology for tritium production by use of 6LiAl alloy has been developed with the aim of furnishing tritium for fusion research. The alloy contains β-phase, i.e., intermetallic compound β-LiAl, which has a large influence on the tritium behavior in 6Li-Al alloy. Since β-LiAl has a unique crystal structure and a large amount of Li vacancy at room temperature, the tritium behavior in β-LiAl is affected by the defect structure and the lithium diffusion. In this paper, on the basis of a simultaneous measurement of tritium release rate and electrical reseistivity, it is suggested that the tritium diffusion has a strong correlation with the lithium diffusion in the neutron-irradiated β-6LiAl.