ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
K. Isobe, H. Imaizumi, T. Hayashi, S. Konishi, M. Nishi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 988-992
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22732
Articles are hosted by Taylor and Francis Online.
A Fuel cleanup system (FCU) that recovers fusion fuel (tritium and deuterium) from plasma exhaust mixture gas has been developed and demonstrated at the Tritium Process Laboratory (TPL) of Japan Atomic Energy Research Institute (JAERI). We have proposed a new closed loop FCU system built up by connecting the tubular reservoir tank, the electrolytic reactor and a palladium diffuser. In the electrolytic reactor, methane and water are converted at the same time by electrochemical reaction in gas phase oxidation and reduction to liberate hydrogen isotope as a form of elemental hydrogen. The long tubular reservoir tank that is designed to store and transfer the products gas in plug flow prevents from mixing with reactants for the successive repeat processing. With this tank, high overall decontamination factor of system can be obtained by small number of circulation. As the demonstration test, mixture gas consist of hydrogen isotopes, methane and He were processed in the closed loop FCU. The electrolytic reactor and the tubular reservoir tank worked as designed successfully, and the entire loop exhibited efficient impurity processing performance. The concentration of methane was observed to decrease sharply in every processing by the electrolytic reactor from 2.3% to less than 12ppm finally.