ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Takao Kawano, Yoichi Sakuma, Masatoshi Ohta, Toshiki Kabutomori, Mamoru Shibuya
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 981-987
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22731
Articles are hosted by Taylor and Francis Online.
A method of decomposing hydrogen compounds was developed by employing a zirconium nickel (ZrNi) alloy. This method enables all tritium compounds (HTO, CH3T, C2H5T, etc.) in an exhaust gas to be decomposed into their respective elements, and the tritium itself to be removed in the form of hydrogen gas (HT). The method was developed through a series of experiments using methane. Using previous study results, a chemical reaction equation of methane decomposition on a ZrNi alloy is proposed and discussed. To ascertain the mechanism of methane decomposition on a ZrNi alloy, alloy samples were examined based on X-ray diffraction spectra and SEM electronographies before, during, and after the experiments. It was found that, as the decomposition time elapsed, peaks attributed to a pure ZrNi alloy gradually disappeared and new ones appeared in the X-ray spectra. The new peaks were attributed to the presence of ZrC, pure Ni, and a simple carbon substance. This indicates that the Zr in a carbon-bound alloy results in ZrC generation that releases Ni metal, and part of the C generated from the methane decomposition remains as a simple, as-grown substance. From these results, the decomposition reaction of methane using a ZrNi alloy can be represented by an equation involving the alpha value. The equation shows that one ZrNi molecule decomposes (1+ α) molecules of methane and generates 2(1+α) molecules of hydrogen. The alpha value was estimated based on the volume of decomposed methane and the weight of the ZrNi alloy used in the experiments. It is known that the alpha value is strongly dependent on the experimental conditions and can be used as an index to evaluate the decomposition condition.