ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Takao Kawano, Yoichi Sakuma, Masatoshi Ohta, Toshiki Kabutomori, Mamoru Shibuya
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 981-987
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22731
Articles are hosted by Taylor and Francis Online.
A method of decomposing hydrogen compounds was developed by employing a zirconium nickel (ZrNi) alloy. This method enables all tritium compounds (HTO, CH3T, C2H5T, etc.) in an exhaust gas to be decomposed into their respective elements, and the tritium itself to be removed in the form of hydrogen gas (HT). The method was developed through a series of experiments using methane. Using previous study results, a chemical reaction equation of methane decomposition on a ZrNi alloy is proposed and discussed. To ascertain the mechanism of methane decomposition on a ZrNi alloy, alloy samples were examined based on X-ray diffraction spectra and SEM electronographies before, during, and after the experiments. It was found that, as the decomposition time elapsed, peaks attributed to a pure ZrNi alloy gradually disappeared and new ones appeared in the X-ray spectra. The new peaks were attributed to the presence of ZrC, pure Ni, and a simple carbon substance. This indicates that the Zr in a carbon-bound alloy results in ZrC generation that releases Ni metal, and part of the C generated from the methane decomposition remains as a simple, as-grown substance. From these results, the decomposition reaction of methane using a ZrNi alloy can be represented by an equation involving the alpha value. The equation shows that one ZrNi molecule decomposes (1+ α) molecules of methane and generates 2(1+α) molecules of hydrogen. The alpha value was estimated based on the volume of decomposed methane and the weight of the ZrNi alloy used in the experiments. It is known that the alpha value is strongly dependent on the experimental conditions and can be used as an index to evaluate the decomposition condition.