ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
M. Glugla, T.L. Le, S. Gross, D. Niyongabo, R. Lsser, K.H. Simon
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 969-973
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22729
Articles are hosted by Taylor and Francis Online.
The principal techniques developed by different research groups for the detritiation of primary gaseous wastes are altogether based on processes with multiple stages comprising at least one step involving heterogeneously catalyzed chemical reactions. While the permeation of hydrogen isotopes through palladium/silver membranes combined with heterogeneously catalyzed reactions were proven to be particularly suitable for highly contaminated gases, isotopic swamping in a counter current mode is the method of choice in ITER for the final detritiation and recovery of residual amounts of tritium. Since the catalyst employed to promote the isotope exchange reactions should not support methanation of carbon monoxide and carbon dioxide an attempt was made to design a highly selective exchange catalyst. Amongst the catalysts screened with methane - deuterium exchange and carbon oxide - methanation as test reactions a high temperature reduced palladium/silica (SiO2) catalyst was found to match the selectivity requirements. However, even though the palladium/silica catalyst shows very little activity for methanation, carbon monoxide was found to obstruct the isotope exchange reaction, whereas carbon dioxide does not show this unwanted effect.