ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Tetsuji Noda, Hiroshi Araki, Hiroshi Suzuki
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 962-966
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22728
Articles are hosted by Taylor and Francis Online.
The desorption behavior of deuterium from molybdenum, Mo-0.001 mass %C, Mo-0.06-0.092 mass %B, tungsten and W-0.011 mass %C prepared with arc-melting in Ar-10%D2 was studied using a vacuum desorption method in the temperature range of 533–1152K. The diffusivity of deuterium measured for molybdenum was D=4.97x10−7 exp(−36.7kJ/mol/RT)m2s−1 and D=1.77x10−6 exp(−55.8kJ/mol/RT)m2s−1 for tungsten. The diffusivity of deuterium for both molybdenum and tungsten decreased with an addition of C and B. This decrease was considered due to the trap effect of carbide and boride. The trapping energy estimated was 54 kJ/mol for Mo-C and Mo-B and 82kJ/mol for W-C.