ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
T.Tanifuji, S. Jitsukawa, S.Nasu, A.Moon, K.Mori, S.Nishikawa, M.Yamanaka, Y.Izawa
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 954-957
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22726
Articles are hosted by Taylor and Francis Online.
We investigated tritium (T) release behavior from silica glass. The specimens were 8 kinds of commercially available silica glass. T was injected by the 6Li (n,α)T reaction of sintered pellets of lithium oxide (Li2O) into the silica glass with thermal neutrons in JRR-2 (VT-8) up to 5 × 1018 neutrons/cm2 at ambient temperature (about 350 K). After irradiation, the Li2O pellets were removed from the silica glass, and T release from the silica glass was measured in a flow of hydrogen (H2) or ammonia (NH3) sweep gas at atmospheric pressure at a constant heating rate of 2 K/min between 675 K and 1375 K with a proportional counter. In the case of H2 sweep gas, a maximum tritium release rate was observed around 1023 K, while in the case of NH3 sweep gas, two peaks around 1023 K and around 1123 K or a peak around 1123 K with a shoulder were obserbed. After the experiments of T release, FT-IR spectra showed a decrease of SiOH bands at 3650 cm−1. On the other hand, no changes in intensities at 2250 cm−1 due to SiH were observed for both samples before and after T release.