ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G.A. Esteban, F. Legarda, L.A. Sedano, A. Perujo
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 948-953
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22725
Articles are hosted by Taylor and Francis Online.
An accurate and particular description of isotope effects in hydrogen transport within structural martensitic steels is highly needed in nuclear fusion technology in order to describe the tritium-material interaction on the basis of the properties of the non-radioactive hydrogen isotopes (protium and deuterium). As a result, tritium transport investigation becomes technologically more feasible because a cost-effective radioactive device is not mandatory. Additionally, a precise isotopic description allows differentiating the behaviour of the fuel-components deuterium and tritium within the blanket structures in reactor operation conditions. A time-dependent gas-phase isovolumetric desorption technique has been used to evaluate the isotopic effects in the diffusive transport parameters of hydrogen in an 8% CrWVTa reduced activation martensitic steel in the temperatures range 423 to 892 K and driving pressures from 4·104 to 1·105 Pa. Experiments have been run with both protium and deuterium obtaining their respective transport parameters diffusivity (D), Sieverts' constant (Ks), permeability (Φ), the trap site density (ηt) and the trapping activation energy (Et).