ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G.A. Esteban, F. Legarda, L.A. Sedano, A. Perujo
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 948-953
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22725
Articles are hosted by Taylor and Francis Online.
An accurate and particular description of isotope effects in hydrogen transport within structural martensitic steels is highly needed in nuclear fusion technology in order to describe the tritium-material interaction on the basis of the properties of the non-radioactive hydrogen isotopes (protium and deuterium). As a result, tritium transport investigation becomes technologically more feasible because a cost-effective radioactive device is not mandatory. Additionally, a precise isotopic description allows differentiating the behaviour of the fuel-components deuterium and tritium within the blanket structures in reactor operation conditions. A time-dependent gas-phase isovolumetric desorption technique has been used to evaluate the isotopic effects in the diffusive transport parameters of hydrogen in an 8% CrWVTa reduced activation martensitic steel in the temperatures range 423 to 892 K and driving pressures from 4·104 to 1·105 Pa. Experiments have been run with both protium and deuterium obtaining their respective transport parameters diffusivity (D), Sieverts' constant (Ks), permeability (Φ), the trap site density (ηt) and the trapping activation energy (Et).