ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Mark T. Paffett, R. Scott Willms, Charles A. Gentile, Charles H. Skinner
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 934-938
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22722
Articles are hosted by Taylor and Francis Online.
Surface characterization studies were performed on graphite tiles used as first wall materials during DT operation of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. These ex situ analysis studies revealed a number of interesting and unexpected features. In this work we examined the spatial and (where possible) the depth distribution of impurity species deposited onto the plasma facing surfaces using X-ray Photo-electron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS). This work determined that beyond the predominant species of carbon and oxygen, common impurities included silicon, boron, lithium and sulfur. Oxygen content in the plasma facing tile surfaces ranged from 20 to 50 atomic percent [excluding H-isotopes], clearly indicating an extensive zone of oxidized carbon. By contrast, carbon tile surfaces not exposed to the plasma have surface oxygen contents ranging from 2 to 6 atomic percent. Analytical measurements of the secondary impurities (B, Li, Si, S) levels were on the order of 1–4 atomic percent, (boron and lithium were injected for wall conditioning in TFTR.) The core level binding energies of these impurity species were consistent with the presence of common oxides or hydroxides (e.g., BxOy, Li2O, LiOH, Silicates). XPS measurements performed in concert with depth profiling indicated that the tile oxidized zone was significantly deeper than 1 micrometer into the (averaged) surface. Surface analytical results clearly indicate that plasma operations clearly redeposit injected impurities (Li, B) and the depth profiles and distributions of the hydrogen isotopes may be impactedand/or influenced by this deposition process.An attempt at determining hydrogen isotope concentration distributions was made using positive ion SIMS. Specific regions of some surfaces clearly indicated the presence of m/z=3 (HD, T) and m/z=15 (CH3, CHD, CT). Preliminary data examination using positive ion SIMS examination indicates that these mass markers are substantially higher in the near surface region when compared with spectra recorded deeper in the surface region. The deuterium and tritium concentrations were; however, sufficiently low or compromised bycommon isobaric interferencesthat accurate isotopic distributions using SIMS were not possible. These findings are in agreement with results reported by others. [Morimoto et al, Sun et al, reference 3 Haasz et al]