ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Tanabe, K. Miyasaka, M. Rubel, V. Philipps
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 924-928
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22720
Articles are hosted by Taylor and Francis Online.
In order to investigate tritium behavior in tokamak, we have measured surface distributions of deuterium and tritium on graphite limiter tiles used in TEXTOR under D-D operation by means of an ion beam analysis and tritium imaging plate technique, respectively. It was found that both distributions were quite different, i.e. deuterium retention was higher at the deposited area, whereas tritium retention was higher at the erosion dominated area. This is because tritium produced by the D-D reaction, initially having 1 MeV, did not fully lose its energy in the TEXTOR plasma and implanted into the plasma facing materials nearly homogeneously, whereas deuterium was codeposited with carbon and boron, the main impurities in the TEXTOR plasma. This is also confirmed by the finding that high level of tritium was detected beneath the deposited layer. Tritium distribution, however, was modified by the temperature increase due to plasma heat load. Thus the comparison of tritium profiles with the deuterium profile gives a large amount of important and new information on PMI, and may be used as a new diagnostic technique for PMI.