ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
S. Tominaga, A. Busnyuk, T. Matsushima, K. Yamaguchi, F. Ono, T. Terai, M. Yamawaki
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 919-923
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22719
Articles are hosted by Taylor and Francis Online.
In view of benefits expected from the employment of membranes for particle control in fusion devices and for separation of hydrogen from its mixtures with hydrocarbons, the behavior of a Pd sample is investigated in a plasma-membrane device with a graphite target. The permeation of hydrogen through a 0.2 mm-thick Pd membrane with clean surfaces was found to be limited by the bulk diffusion. An incident flux of hydrocarbon radicals (approx. 2×1012 cm−2s−1) in hydrogen plasma forms no carbon layer on the Pd surface. Applying of a negative bias to the target gives rise to target sputtering, and to the deposition of carbon onto the membrane surface. The formation of carbon layer results in a decrease of the absorption probabilities of both H2 molecules and H atoms. The effect of the deposition of carbon is found to depend non-monotonically on membrane temperature.