ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Xiaohua Cao, Benfu Yang, Huajin Tan, Jingping Wan, Changyong Jiang
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 892-896
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22713
Articles are hosted by Taylor and Francis Online.
The adsorption and desorption behaviors of tritium on the surfaces of stainless steel, copper, molybdenum and Kovar were studied. After the exposure in tritium gas ( 9 kPa gaseous tritium, 2 minutes exposure at 873 K and 40 minutes cooling ), the tritium desorbed at room temperature and during heating up to 1123 K and total sorbed tritium of the samples were measured. The results showed that the desorbed tritium at room temperature was only 1∼6% of total sorbed tritium and its amount order was: Kovar >copper > stainless steel > molybdenum. The total desorbed tritium was ranging from 2 to 22 MBq/cm2, the largest is for Kovar and the smallest is for stainless steel. The tritium released from these materials at room temperature and during heating was mostly in the form of HTO. The thermo-desorption spectra of these materials were obtained. It was found that at least 5, 3, 3, 4 sorption states of tritium exist in the exposed Kovar, molybdenum, copper and stainless steel samples respectively. Doping 1% hydrogen in the carrying gas of helium during the thermo-desorption had rather effect on this process.