ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yung Sung Cheng, Yue Zhou, Charles A. Gentile, Charles H. Skinner
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 867-871
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22708
Articles are hosted by Taylor and Francis Online.
Amorphous tritiated carbon films are formed through co-deposition of the radioactive isotope tritium (3H or T) with carbon onto plasma facing surfaces in fusion plasmas. The Tokamak Fusion Test Reactor (TFTR), operated by the Princeton Plasma Physics Laboratory, was fueled by tritium and deuterium neutral beam injection and gas puffing. Tritium was co-deposited as amorphous hydrogenated carbon onto graphite tiles and stainless steel surfaces inside the reactor. Since termination of plasma operations, carbon tritide particles have remained in the air in the vessel. Dosimetric limits for occupational exposure to carbon tritide particles need to be established. The purpose of this study was to characterize carbon tritide particle samples inside the TFTR in terms of size, self-absorption of tritium beta, and dissolution rate in simulated lung fluid. Dose estimates of the inhaled carbon tritide particles can be calculated based on the dissolution rate, particle size, and self-absorption factor. The count median diameter and geometric standard deviation were 1.23 µm and 1.72, respectively, indicating that they are respirable particles and can stay suspended in the air for a longer time. The dissolution rate in the lung-simulated fluid was determined in a static system. The dissolution rate ranged from 10−1–10−3 per day in the first few hours, then it decreased to between 10−3 and 10−4. The retention curve of tritium in carbon indicated that >90% of the tritium remained in the particles after 110 d in the simulated lung fluid. This information is being used to support the establishment of respiratory protection requirements.