ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yung Sung Cheng, Yue Zhou, Charles A. Gentile, Charles H. Skinner
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 867-871
Material Interaction and Permeation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22708
Articles are hosted by Taylor and Francis Online.
Amorphous tritiated carbon films are formed through co-deposition of the radioactive isotope tritium (3H or T) with carbon onto plasma facing surfaces in fusion plasmas. The Tokamak Fusion Test Reactor (TFTR), operated by the Princeton Plasma Physics Laboratory, was fueled by tritium and deuterium neutral beam injection and gas puffing. Tritium was co-deposited as amorphous hydrogenated carbon onto graphite tiles and stainless steel surfaces inside the reactor. Since termination of plasma operations, carbon tritide particles have remained in the air in the vessel. Dosimetric limits for occupational exposure to carbon tritide particles need to be established. The purpose of this study was to characterize carbon tritide particle samples inside the TFTR in terms of size, self-absorption of tritium beta, and dissolution rate in simulated lung fluid. Dose estimates of the inhaled carbon tritide particles can be calculated based on the dissolution rate, particle size, and self-absorption factor. The count median diameter and geometric standard deviation were 1.23 µm and 1.72, respectively, indicating that they are respirable particles and can stay suspended in the air for a longer time. The dissolution rate in the lung-simulated fluid was determined in a static system. The dissolution rate ranged from 10−1–10−3 per day in the first few hours, then it decreased to between 10−3 and 10−4. The retention curve of tritium in carbon indicated that >90% of the tritium remained in the particles after 110 d in the simulated lung fluid. This information is being used to support the establishment of respiratory protection requirements.