ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. Kamada, T. Fujita, S. Ishida, M. Kikuchi, S. Ide, T. Takizuka, H. Shirai, Y. Koide, T. Fukuda, N. Hosogane, K. Tsuchiya, T. Hatae, H. Takenaga, M. Sato, H. Nakamura, O. Naito, N. Asakura, H. Kubo, S. Higashijima, Y. Miura, R. Yoshino, K. Shimizu, T. Ozeki, T. Hirayama, M. Mori, Y. Sakamoto, Y. Kawano, A. Isayama, K. Ushigusa, Y. Ikeda, H. Kimura, T. Fujii, T. Imai, M. Nagami, S. Takeji, T. Oikawa, T. Suzuki, T. Nakano, N. Oyama, S. Sakurai, S. Konoshima, T. Sugie, K. Tobita, T. Kondoh, H. Tamai, Y. Neyatani, A. Sakasai, Y. Kusama, K. Itami, M. Shimada, H. Ninomiya, H. Urano
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 185-254
Technical Paper | doi.org/10.13182/FST02-A227
Articles are hosted by Taylor and Francis Online.
Fusion plasma performance and confinement studies on JT-60 and JT-60U are reviewed. With the main aim of providing a physics basis for ITER and the steady-state tokamak reactors, JT-60/JT-60U has been developing and optimizing the operational concepts, and extending the discharge regimes toward sustainment of high integrated performance in the reactor relevant parameter regime. In addition to achievement of high fusion plasma performances such as the equivalent breakeven condition (QDTeq up to 1.25) and a high fusion triple product nD(0)ETi(0) = 1.5 × 1021 m-3skeV, JT-60U has demonstrated the integrated performance of high confinement, high N, full non-inductive current drive with a large fraction of bootstrap current. These favorable performances have been achieved in the two advanced operation regimes, the reversed magnetic shear (RS) and the weak magnetic shear (high-p) ELMy H modes characterized by both internal transport barriers (ITB) and edge transport barriers (ETB). The key factors in optimizing these plasmas towards high integrated performance are control of profiles of current, pressure, rotation, etc. utilizing a variety of heating, current drive, torque input, and particle control capabilities and high triangularity operation. As represented by discovery of ITBs (density ITB in the central pellet mode, ion temperature ITB in the high-p mode, and electron temperature ITB in the reversed shear mode), confinement studies in JT-60/JT-60U have been emphasizing freedom and also restriction of radial profiles of temperature and density. In addition to characterization of confinement and analyses of transport properties of the OH, the L-mode, the H-mode, the pellet mode, the high-p mode, and the RS mode, JT-60U has clarified formation conditions, spatial structures and dynamics of edge and internal transport barriers, and evaluated effects of repetitive MHD events on confinement such as sawteeth and ELMs. Through these studies, JT-60U has demonstrated applicability of the high confinement modes to ITER and the steady-state tokamak reactors.