ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
S. Konishi, K. Tobita, S. Nishio, H. Okada. R. Kurihara
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 817-820
Design and Model | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22698
Articles are hosted by Taylor and Francis Online.
Technical issues on tritium technology are investigated from the aspects of processing, safety and fuel supply, considering the concept of DEMO plant following ITER as the next target. Fusion plant equipped with power blanket will contain high temperature heat transfer medium and bred tritium in a tritium cycle. Although the inventory and throughput may not increase drastically from ITER, tritium plant will require significant technical improvements characterized by the self-consistent tritium fuel cycle and safety function to maintain the tritium level in the power train at adequately low level. Tritium balance issue will be one of the most important features because it will strongly affect the fusion in energy market by supplying initial loading. Tritium processing for coolant that will be mainly used for normal operation will dominate the safety feature of the entire plant by its technical difficulty and importance. Under off-normal conditions, this coolant tritium process can remove possible spill within the confinement, and thus fusion plant will not have any major process dedicated for accidents. Tritium technology is essential to make fusion energy attractive from the aspect of socio-economics, and its success in development is of vital importance toward fusion power plant as viable energy source for future.