ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. Perevezentsev, J. Hemmerich
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 797-800
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22694
Articles are hosted by Taylor and Francis Online.
Storage of tritium in the form of metal hydride is a common technique in tritium handling facilities and is generally acknowledged as the only option for the storage of large tritium inventories in future fusion reactor applications. Since accounting for large inventories by the conventional TPVC (Temperature, Pressure, Volume, Concentration) is very cumbersome, it is highly desirable to perform accounting directly by the application of calorimetric methods, for example based on monitoring of temperature rise in the tritium storage container caused by heat of the tritium decay (1.95W/mol.T2). Following an earlier evaluation1 of the JET tritium storage containers by electrical simulation of heat of the tritium decay the viability of the method was proven by adiabatic calorimetry with known tritium inventories up to ≈5900TBq.