ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
U.Besserer, R.-D.Penzhorn, R.Brandt
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 793-796
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22693
Articles are hosted by Taylor and Francis Online.
The Tritium Storage facility of the Tritium Laboratory Karlsruhe (TLK), was recently upgraded by four additional uranium beds and one containing ZrCo. Now it is possible to compare under very similar conditions the sorption/desorption properties of uranium and those of ZrCo. To test the adequacy of ZrCo for routine, the getter was folly disproportionated repeatedly using either protium, deuterium or tritium. In all cases was it possible to completely restore the original sorption/desorption properties of the getter. In view of the needs of the Storage and Delivery System (SDS) of the ITER-FEAT Tritium Plant, i.e. delivery of T2 90% - D2 10% and pure D2 to generate mixtures of various compositions, the isotope effects during sorption/desorption cycles of H-D and D-T mixtures in ZrCo granules have been investigated. A transportable storage vessel identical to those containing uranium presently used at TLK for the transport of tritium has been designed, build and filled with ZrCo. These beds fit into the highly sensitive calorimeters available at TLK. With these beds the tritium permanently trapped in U and ZrCo can be compared under similar operation conditions.