ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. E. Klein, J. R. Brenner, E. F. Dyer
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 782-787
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22691
Articles are hosted by Taylor and Francis Online.
A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed and tested. The bed contained 12.6 kg of a La-Ni-Al alloy and used aluminum foam to improve heat transfer within the bed. Steady-state temperature measurements made at constant power showed a nonuniform bed temperature profile. Protium absorption rates were measured at pressures of 253 kPa, 413 kPa, and 680 kPa with forced convection cooling air flow rates ranging from 50 to 150 SLPM air. Absorption tests were also performed simulating the absorption of tritium and a method for estimating this rate using protium absorption data presented. Desorption rates were measured at pressures ranging from 20 kPa to 933 kPa using dual and single 400 watt electric heaters and found desorption rates were only impacted at the beginning and the end of a desorption cycle by the use of a single heater.