ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. E. Klein
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 764-775
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22689
Articles are hosted by Taylor and Francis Online.
Titanium was selected for evaluation as a tritium storage material. Titanium-deuterium desorption isotherm data at 550, 600, 649, 700, and 760°C are presented and were used to evaluate storage vessel design loading limits. Two prototype Hydride Storage Vessels (HSVs) containing a nominal 4400 grams of Ergenics HY-STOR 106™ titanium sponge were tested to determine activation, loading, and desorption conditions. HSV titanium activation was performed using two methods. The first was vacuum evacuation using stepped temperature holds up to 600°C. The second, and preferable method, was a dry gas purge for several hours at up to 350°C followed by heated evacuations at temperatures up to 600°C. The vessels were allowed to sit idle after activation for five days before loading to determine the quality of the activation process. HSV gas loadings were performed through the process tube inserted into the hydride at 5, 7.5, 10, 15, 20 SLPM, and under conditions to simulate direct loading from a 1500 liter process tank. Temperature measurements made at various locations around the vessel showed the internal maximum temperature ranged from 500°C to 700°C and varied with loading rate. Maximum external temperatures ranged from 300°C at 5 SLPM to 400°C at 20 SLPM. Loading the HSV at 20 SLPM from the tube above the level of the hydride generated at maximum internal temperature of 800°C. HSV desorptions were done under a variety of vacuum conditions at temperatures up to 700°C. HSV desorption/gas removal was greatly reduced at temperatures below 700°C, the use of one instead of both process tubes, and the choice of vacuum pumps. Integration of mass flow data was considered a more reliable method of determining HSV gas inventory than the use of titanium isotherm data. Up to 84 vol% of the gas inventory can be removed from the HSV by desorption in 24 hours, but tritium removal by isotopic exchange will be needed for vessel disposal - even if longer evacuation times were used.