ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
J. E. Klein
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 764-775
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22689
Articles are hosted by Taylor and Francis Online.
Titanium was selected for evaluation as a tritium storage material. Titanium-deuterium desorption isotherm data at 550, 600, 649, 700, and 760°C are presented and were used to evaluate storage vessel design loading limits. Two prototype Hydride Storage Vessels (HSVs) containing a nominal 4400 grams of Ergenics HY-STOR 106™ titanium sponge were tested to determine activation, loading, and desorption conditions. HSV titanium activation was performed using two methods. The first was vacuum evacuation using stepped temperature holds up to 600°C. The second, and preferable method, was a dry gas purge for several hours at up to 350°C followed by heated evacuations at temperatures up to 600°C. The vessels were allowed to sit idle after activation for five days before loading to determine the quality of the activation process. HSV gas loadings were performed through the process tube inserted into the hydride at 5, 7.5, 10, 15, 20 SLPM, and under conditions to simulate direct loading from a 1500 liter process tank. Temperature measurements made at various locations around the vessel showed the internal maximum temperature ranged from 500°C to 700°C and varied with loading rate. Maximum external temperatures ranged from 300°C at 5 SLPM to 400°C at 20 SLPM. Loading the HSV at 20 SLPM from the tube above the level of the hydride generated at maximum internal temperature of 800°C. HSV desorptions were done under a variety of vacuum conditions at temperatures up to 700°C. HSV desorption/gas removal was greatly reduced at temperatures below 700°C, the use of one instead of both process tubes, and the choice of vacuum pumps. Integration of mass flow data was considered a more reliable method of determining HSV gas inventory than the use of titanium isotherm data. Up to 84 vol% of the gas inventory can be removed from the HSV by desorption in 24 hours, but tritium removal by isotopic exchange will be needed for vessel disposal - even if longer evacuation times were used.