ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Sang Ge, Luo Xuejian, Liang HongWei, Sun Ying, Wu Sheng, Su Yongjun, Tu Mingjing, Luo Wenhua
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 758-763
Hydride and Storage | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22688
Articles are hosted by Taylor and Francis Online.
In this paper, studies have been made concerning the poisoning mechanism. The processes of poisoning of LaNi47Al0.3 alloy are analyzed in detail by means of X-ray photoelectron spectroscopy (XPS), second ion mass spectroscopy (SIMS), Auger-energy spectroscopy (AES) and X-ray diffraction (XRD). The changes of the valence and the concentration distribution of the elements of the alloy LaNi4.7Al0.3 poisoned by CO are studied. The process and the mechanism of CO's poisoning of alloy LaNi47Al0.3 are proposed as follows: CO is absorbed on the surface of alloy, part of which reacts with La forming LaC2 and La2O3, or reacts with Ni forming NiO and C in the surface layer, the rest of the CO is decomposed into C and O, which diffuse into the bulk to react with La, Ni and Al. These results in phase-split reaction in surface layer of the particle, and enrichment of La and impoverishment Ni on the surface have taken place. The poisoning effect decreases with a increase of depth. The diffusion depth of C is within 600 Å in the surface layer, and that of O is within 1000 Å.The oxide film and carbonizing film prevent the H-storage alloys from further absorbing hydrogen, which leads to a deceleration of the H-storage capability. Moreover, The formation of a new phase with poor H-absorption capability is caused by the phase split reactions, which is one of reasons for the decrease of H-absorption property of the H-storage alloys.