ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Allen Y.K. Chen, A. A. Haasz, J. W. Davis
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 711-715
Decontamination and Waste | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22679
Articles are hosted by Taylor and Francis Online.
We present an overview of a semi-empirical kinetic model of chemical reaction product formation due to simultaneous irradiation of carbon by O+ and H+ symbolically represented by O+-H+→C. The model was developed in conjunction with our experimental studies of the O+-H+→C and the O+-H+→C/B irradiation cases; C/B represents boron-doped graphite. Model predictions were made for flux and energy dependence, and generally good agreement with experimental results has been seen for both single-species cases: H+→C and O+→C. For the O+-H+→C reaction, the model agrees quite well with the flux ratio-dependence of the H2O yield, the resulting CO and CO2 yield reductions, and the CH4 yield reduction.