ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Rosanvallon, J.L. Courouau, G. Marbach, W. Gulden
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 695-699
Decontamination and Waste | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST41-695
Articles are hosted by Taylor and Francis Online.
The waste management is a challenge for any future fusion facility including ITER. Detritiation could allow easier procedures since the practices in different countries already limit tritium contents and releases for disposal in nuclear waste storage. The experience developed in steel-making processes, for liquid steel degassing by gas injection, has been applied for modeling of tritium removal. A numerical model, initially developed at IRSID (USINOR's Process Research Center) for hydrogen removal, is adapted to determine detritiation efficiency. The hydrogen isotope transfer between liquid metal and injected gas occurs in two elementary steps, liquid phase mass transfer and interfacial reaction driven by Sievert's law for H2 and T2. In the gas phase, H2 and T2 react to give HT, according to the thermodynamic equilibrium and the isotopic exchange. The model takes into account the change in bubbles swarms (sizes and velocities) as they ascent from the bottom of the vessel to the metal free surface. It is thus possible to predict the tritium content evolution during the treatment as a function of process parameters. Duration and inlet gas mixture, which have the major influence on detritiation efficiency, must be set according to the tritium initial concentration and the activity expected in the final waste.