ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Chris Day, August Mack, Manfred Glugla, David K. Murdoch
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 602-606
Device, Facility, and Operation | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22659
Articles are hosted by Taylor and Francis Online.
The tritium inventory of an experimental fusion reactor like ITER is determined by a broad range of influential factors. The tritium retention in the vacuum system is one important contribution to the overall tritium inventory. The high vacuum system for ITER is based on a set of cryogenic pumps, and sees the whole spectrum of tritiated gas species. The cryopumps are accumulation pumps; thus, the semi-permanent tritium inventory present in them is governed by the effectiveness of pump regeneration. Moreover, a permanent inventory background must also be envisaged. This paper delineates the staggered pump concept and a multi-stage regeneration scheme as main measures for step-wise minimisation of the tritium inventory in the high vacuum pump system and outlines the different contributions which add to it. By these methods, the 268 g of tritium inventory present after nominal long pulse operation of ITER, depending on the chosen fuelling case, can be reduced to 6 g in the pumps themselves, plus up to 100 g of codeposited tritium needing recovery clean-up.