ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. E. Klein
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 542-550
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22648
Articles are hosted by Taylor and Francis Online.
In-bed accountability (IBA), a steady-state, flowing gas calorimetric method, has been implemented for production measurement of tritium inventories in metal hydride storage beds utilizing a LaNi4.25Al0.25 metal hydride alloy. Six-point calibration curves have been completed for six, nominal 390 gram, and two nominal 1310 gram tritium metal hydride storage beds. The equations used to calculate inventory errors are derived and presented in the Appendix. Beds with the same amount of insulation gave similar IBA calibration curves and bed temperature versus tritium inventory results. Tritium IBA inventory measurement errors varied slightly with bed inventory and maximum values at the 95% confidence level ranged from 4 to 9 grams for the 390 gram beds (1.1 to 2.6%) and from 8 to 13 grams for the 1310 gram beds (0.7 to 1.2%). Comparison of other methods for determining inventories on the same beds (hydride pressure, hydride bed temperature, and hydride bed temperature rise above the glove box temperature) showed the IBA method gave the highest accuracy tritium measurements. These other inventory methods also showed greater variability in measurement error over the range of tritium inventories, van't Hoff plots of hydride bed pressure under steady-state IBA conditions revealed a reduction in hydride pressure after several months of tritium service compared to other beds without tritium exposure.